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FOREWORD

This report describes part of a comprehensive and continuing program of re-

search into remote sensing of the environment from aircraft and satellites and the

supporting effort of recording and analyzing the data gathered by these vehicles by
ground-based researchers. The research is being carried out for NASA's Lyndon B.
Johnson Space Center, Houston, Texas, by the Environmental Research Institite of Michi -
gan. The basic objective of this multidisciplinary program is to develop remote
sensing as a practical tool to provide the planner and decision maker with extensive
information quickly and economically.

Timely information obtained by remote sensing can be important to such people
as farmers, city planners, conservationists, and others concerned with problems such
as crop yield and disease, urban land studies and development, water pollution, and
forest management. The scope of our program includes (1) extending the understand-
ing of basic processes; (2) discovering new applications, developing advanced remote-
sensing systems, and improving automatic data processing to extract information in a
useful form; and (3) assisting in data collection, processing and analysis and ground
truth verification.

The research described herein was performed under NASA Contract NAS 9-9784,
Task B 2.10, and covers the period 1 November 1971 through 31 January 1973. Dr.
Andrew Potter was Technical Monitor. The program is directed by R. R. Legault,
Associate Director of the Institute, and J. D. Erickson, Principal Investigator. The
work was done under the management of the Earth Observations Division, Lyndon B.
Johnson Space Center. The Institute number for this report is 31650-155-T.
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ABSTRACT

A linear decision rule to reduce the time required for processing multispec-
tral scanner data is developed. Test results are presented which justify the use of
the new rule for digital processing whenever both accuracy and processing time
are important. A method of evaluating the performance of the rule is also developed
and applied to the problem of choosing a subset of channels. A technique used to
find linear combinations of channels is described. The ability to extend signatures
throughout a small area of approximately fifty square miles is tested. After pre-
processing, signatures derived from the first of seven overlapping data sets are
applied to all data sets. The test results show that the average probability of mis-
classification tends to increase with an increase in the number of data sets over
which the signatures are extended.
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SYMBOLS

C average cost

Cji cost of choosing Zi when Xj is the true material

D vector

F scalar

I identity matrix with rank mm
M measure or abstract distance as an estimate of average probability of

misclassification

m rank

Pi(y) probability density of y when Xi is true

P(Xi)  a priori probability of Xi

P(Xi, Z ) joint probability of Xi and Z.

P(Z. X.) conditional probability of Z. when Xi is true

QO common covariance matrix

Qi' Ri covariance matrix for i-th material

q parameter of best linear decision rule

R. decision space for Z.

U(O) multiplicative correction factor

V(O) additive correction factor

y datum vector point

Xi  set of possible materials

Zi  set of possible decisions

6.. reflectance
1

Bij unknown angle
X diagonal matrix

Pi mean vector for i-th material
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A STUDY OF TECHNIQUES FOR PROCESSING
MULTISPECTRAL SCANNER DATA

1

SUMMARY

This report describes part of a comprehensive and continuing program to investigate re-

mote sensing of the environment from aircraft and satellites. The overall objective of this

multidisciplinary program at the Environmental Research Institute of Michigan (previously the

Willow Run Laboratories of The University of Michigan) is to develop remote sensing as a practi-

cal tool to provide the planner and decision maker with extensive information quickly and eco-

nomically. The work described in this report covers the problems of improving multispectral

discrimination techniques and extending their recognition capability in the face of changing

conditions. Four main contributions are made in this report:

(1) A linear decision rule that requires less computational time on a digital computer than
the conventional quadratic maximum likelihood decision rule, without an increase in
the average probability of misclassification, is described and test results discussed.

A second decision rule is found for use with a parallel processor, which decreases

the amount of required circuitry.

(2) An accurate and extremely rapid method is shown for finding a subset of channels to use
for processing.

(3) The choice of linear combinations of data channels for processing data is discussed.
A systematic approach to the problem of making an intelligent choice is developed and
possible implementations are presented.

(4) An evaluation is made of a specific preprocessing technique to classify accurately data
from a small area with a limited amount of training information.
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2

INTRODUCTION

2.1. MOTIVATION AND RATIONALE

Remote sensing by the multispectral scanner has been available for some time. Thus far

the principal use of the technique has been to demonstrate the feasibility of performing useful

tasks important to some segment of our society. The Corn Blight Watch of 1971 and the multi-

spectral portion of the ERTS program can be considered as tentative steps away from the basic

feasibility stage. As more confidence and experience are accumulated, we can expect to make

better use of multispectral scanner capabilities.

One of the advantages of the multispectral scanner method of remote sensing is the con-

venience of performing automatic data processing for recognition of ground cover. We foresee

heavier collection and use of data requiring a corresponding increase in data processing. New

processing techniques which reduce the expense of processing without sacrificing recognition

accuracy are needed because the processing of large amounts of multispectral scanner data tends

to be expensive.

Processing on general purpose (or serial) digital computers can also be painfully slow. For
example, to process all the data collected in 10 minutes during a 20 -mile flight by our multispectral
scanner, the Control Data 1604-B digital computer can take 900 hours for recognition alone.

In addition to recognition, computer time is required for digitizing, formatting, preprocessing,
and post-decision analysis. The usual procedure, when processing time is limited, is to reduce

arbitrarily the amount of data analyzed by (1) enlarging the along-track and along-scan resolu-

tions either by use of a subset of points (undersampling) or by smoothing, (2) choosing a subset

of spectral channels for processing, and/or (3) processing only a portion of the total ground area

scanned. Also, decision classes can often be combined so that a limited number of possible

decision classes is used. But even with all of these methods, processing times can be excessive,
or performance can be seriously degraded.

Most of the time-saving methods listed above fall into the category of reducing the amount

of data processed digitally. Time can also be saved by formulating and implementing a decision
rule to determine which material from a given set of materials is represented by each sampled
vector datum point. The form of the decision rule determines digital computer running time.

Special-purpose and parallel computers offer some advantages over general-purpose serial
computers for multispectral recognition processing. However, they too have costs related to
the volume of data processed and the type of decision rule implemented. These costs are more
closely linked to hardware complexity than to computation time. Perhaps the best example of a
special-purpose recognition computer is the ERIM Spectral Analysis and Recognition Computer

2
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(SPARC) which has been in operation for many years. SPARC employs parallel processing

circuitry for analog computation of a quadratic likelihood ratio decision rule, but has hardware

limitations in the number of material classes and spectral channels used for processing any

given data set. Other examples are the hybrid analog/digital designs that have been proposed

by ERIM personnel for several years, and an all-digital system with parallel processing logic

that is presently being designed and constructed.

2.2. DERIVATION OF DECISION RULE

A review of the derivation of the commonly used quadratic decision rule helps to explain

the function of the new decision rule and the linear approximations thereof. Let the set of possi-

ble materials be Xi, i = 1, . . . , m. For an n-dimensional vector datum point y, let the possi-

ble decisions be Zi, i = 1, . . . , M. If we divide the n-dimensional hyperspace containing all

possible samples of y into m regions, the decision becomes Z. for any y in the region R.. The
1 1

decision rule is based on the Bayes formulations with a cost function Ci., the cost associated

with choosing Z. when X. is the true material [1]. The optimum decision rule is that which
1 3

minimizes the average cost C, where

m
C CjiP(Xi Zj) (1)

i,j=l

When the joint probability P(Xi, Z ) is expanded, the result is:

m
C = CjiP(Xi)P(Z jXi) (2)

i,j=l

The conditional probability P(Z IXi) depends upon the region Rj, so that:

C = CjiP(Xi)fPi(y)dy (3)

i,j=l R.

where Pi(y) is the conditional density function of y given X.. Equation (3) can be rewritten in1 1
the following form:

C = P(Xi)Cjii(y) dy (4)

From Eq. (4), the decision rule becomes: for any y choose Z. for that j minimizing the

bracketed term. The resultant choice of all of the R.'s produces a minimum cost function C.

A common practice is to let

3
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Cj= 0, i=j (5)

=1, i j

which weights all misclassifications equally and all correct decisions equally. After some

simplification, Eq. (4) becomes:

m
C = 1 - P(Xi)Pi(y)dy (6)

i=1 R 1

For this case, the regions R. contain those points v where Z. maximizes P(X.)P.(y). This is

commonly known as a weighted maximum likelihood decision rule. If the a priori probabil-

ities P(X i ) are all equal or are assumed equal, the decision would be based only on the

a posteriori probabilities (likelihood functions) Pi(y). For that which follows, the (unweighted)

maximum likelihood decision rule will be assumed.

If the data from each material have a normal, or Gaussian distribution, then

P.(y)(2)n//2q i 1/2 ep (y - p tQ1(y (7)

where pi and Qi are the mean vector matrix and covariance matrix for the i-th material and

n is the number of spectral channels. The decision is the i that maximizes P.(y) or, alterna-

tively, that minimizes

(Y - i) t(Qi) (y - pi ) + InQi1 (8)

This is the decision rule that we have called the quadratic decision rule. The pi and Qi
for each i are estimated from portions of the data called training data.

2.3. APPROXIMATIONS INVOLVED

While the derivation of the quadratic decision rule is straightforward, there are inherent
assumptions that are not realized in multispectral scanner data. One assumption is that the
data from each material class be distributed normally. This assumption has been shown to be
erroneous [2] . Another assumption is that the pi and Qi can be estimated accurately from the
data; however, when inter-field variations are present in the ground cover, the estimates may
not be representative of the data from the entire class. A third assumption is that the likeli-
hood function Pi(y) can be formulated for each y independently. However, with the possible ex-
ception of smoothing of the data, we are ignoring the values of neighboring data points. Finally,
we have the classical objection to the Bayes formulation. We cannot hope to estimate accurately
the costs Cij and the probabilities P(X ). In spite of the failure of multispectral scanner data to
meet these assumptions and conditions, the quadratic decision rule has been used often and
successfully.

4
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Section 3 contains a description of linear approximations to the maximum likelihood deci-

sion rule and a comparison of measured performances of the rules for recognition of several

data sets. Section 4 derives the best linear rule and analyzes the performance of the rule.

A rapid algorithm for finding a subset of channels is discussed, and a suggested method of

finding a linear combination of channels is presented. In Section 5, recognition results are

shown for a small area with the training data chosen from a small portion of the area.

Finally, additional details of the preprocessing methods used for Section 4 are presented in

the appendices.

5
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3

LINEAR DECISION RULES

3.1. GENERAL DESCRIPTION

A number of possible linear decision rules could be used for classifying multispectral

scanner data. We chose to evaluate rules that can be put in the form of a series of pairwise

decisions; the linear discriminant method is such a decision [3]. Another common feature of

the selected rules is that the same data channels are used for each series of pairwise decisions.

We felt that, while choosing different channels for each pairwise decision should be advantageous

when classifying the training data, the advantage would tend to be lost when non-training data

were classified.

Our choice of linear decision rules was influenced by our previous study in which we found

that it was not worthwhile to find likelihood functions better matched than the normal function

to the training data [2]. Thus, for all rules, we are assuming the distributions to be normal

and describable by mean vectors and covariance matrices measured from training data.

3.2. DESCRIPTION OF RULES TESTED

Five linear decision rules were tested and compared with the quadratic decision rule. One

rule, optimistically labeled "best linear," uses the pairwise linear rule that best classifies

data from two normal distributions [3]. As we will show, the best linear decision rule proved

to be the best of the linear rules that we tested. Its formulation is presented in Section 4.

The maximum likelihood decision rule becomes linear when the assumption is made that

all covariance matrices are the same. Therefore, we call it the equal covariance rule, although

it is sometimes referred to as the linear discriminant rule. To develop another rule we tested,

the modified equal covariance rule, we found the linear function and the additive constant which,

when added to the quadratic function formed from the common covariance matrix, best approxi-

mated the likelihood function in the mean square sense. To be more precise, if the quadratic

decision rule based its decision on the maximum of

gi(y) = (y - /i)t ;l(y - ji) + In Qi (9)

and we wished to use

hi(Y) = (y - i)t 01 (y- i) + ytCi + Di (10)

where the same covariance matrix Q0 is used for all processes, then we found the C i and D i

that minimized

6



FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

[hi(y) - g(y)] 2Pi(y) dy (11)

where the integral is n-dimensional. The use of hi(y) involves a linear function of y only, since

the quadratic function yt Q y is common to all processes and hence plays no part in the de-

cision. This rule we labeled modified equal covariance. It proved to be no more accurate than

the unmodified rule.

We tested two additional decision rules. In one, we used the diagonal terms of the covariance

matrices, lettingthe remaining elements be zero. We labeled this rule the zero covariance rule.

The nearest neighbor rule, derived by setting the covariance matrices equal to the unit matrix,
chooses the distribution with the nearest mean. These last two rules, as well as the equal co-

variance rules, are convenient for both serial and parallel computers. The best linear rule is
used most easily on a serial digital computer.

3.3. NULL SET

For all of these decision rules, we included the ability to reject all materials. This null

decision is made when a quadratic function of the datum point exceeds a certain value. The

function depends on the mean vector and covariance matrix corresponding to the decision rule

in use, and represents how far, in a probabilistic sense, the datum point is from the mean.

3.4. TEST RESULTS

We performed a series of tests designed to evaluate the performance of the various de-

cision rules [5, 6]. Our desire was to devise a quantitative comparison, and thereby to elimi-
nate such qualitative procedures as a visual comparison of recognition maps. We also wanted

to make comparisons in a manner directly applicable to the classification problem. We pro-
grammed the decision rules for a digital computer, counting the number of correct and in-

correct recognitions within fields for which we had corroborative ground observations, and

measuring the time taken by the computation. A probability of misclassification was computed
for each field by finding the number of incorrect recognitions, and dividing by the sum of the
number correct and the number incorrect. An average error rate was then found by establishing
the average probability of misclassification. The time measurement included not only that time
needed to make the actual decisions and test for possible rejection, but also the time to read the
data from tape, construct each datum vector, and write the decision on the output tape in our
normal format. Therefore, only relative processing times are presented on the graphs that
follow. We varied the number of channels in order to generate the results.

The results of our classification studies are twofold: first, the quadratic and best linear
decision rules are compared, after which the various linear decision rules are evaluated. In
Fig. 1 we show the results with data from the Imperial Valley. The points indicate the measured

7
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results; the lines between adjacent points were drawn for convenience in identifying the trends.

For the quadratic decision rule, the points from left to right were obtained with two, four, and

six channels of data. For the best linear decision rule, the points correspond to two, four, six,

eight, and ten channels of data. The choice of channel subsets to use was determined by our

normal channel selection procedure (Section 3).

In Fig. 1, the bottom two curves were obtained from tests of the training data from which

had been derived the mean vectors and covariance matrices used in the decision rules. The

two decision rules may be compared by noting that the curve for the quadratic decision rule

lies above and to the right of the curve for the best linear decision rule,showing that for a fixed

processing time the quadratic decision rule had a higher error rate. Alternatively, for a fixed

error rate, the quadratic decision rule required more processing time. When the same num-

ber of channels were used, the quadratic decision rule required more computer time and pro-

duced a slightly lower error rate.

Nontraining or test data provided the top two curves, so they are probably more represen-

tative of an actual classification of data for recognition. The most obvious difference between

these curves and those taken from the training data is that here the error rates are consider-

ably greater. The quadratic decision rule curve is again above and to the right of the linear

decision rule curve. Also, it is no longer true that for the same channels, the quadratic de-

cision rule produces a lower error rate. The same observations hold for all of the data sets

that we tested.

In order to determine whether the particular choice of training data determines the test

results, we decided to use one half of the fields for training data and the other half for test

data. After testing in this manner, we reversed the roles of the data so that the data that had

been training fields became test fields. Three of our classes had an odd number of fields, so

one field from each of these classes was always used as a test field. The results of these tests

can be seen in Figs. 2 and 3. Comparing these figures with Fig. 1, we see that the error rates

are reduced for the test fields and increased for the training fields. One might conclude from

this that for recognizing unknown data, one should use multiple training fields for each class.

We can also see from the curves that the best linear decision is preferred whenever both error

rate and processing time are important considerations.

To see whether our conclusions regarding the comparison of the two decision rules were

only valid for the one data set, we repeated our tests for three other sets. The results can be

seen in Figs. 4, 5, and 6. Again we note the same general conclusions that we found from Fig. 1.

For Fig. 4, we took an additional step in processing the data. All data sets but one were col-

lected at high aircraft altitude, enabling us to choose fields in the center of the scan and thus

avoiding any scan angle effect (dependence of radiance in the scan angle). On the other hand,

8
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the Willow Road data were collected at a low altitude under hazy conditions. Because fields

often extended over half the scanning width at low altitude, the angle effect was not possible to

eliminate by a suitable choice of fields. We therefore preprocessed the data before classifica-

tion by making additive and multiplicative corrections [7]. This procedure reduced the scan

angle effect so that there was less variation over scan angle than between different fields of

the same class. The haze had the effect of reducing contrast, which preprocessing cannot re-

store. With decreased contrast, the signal-to-noise ratio was also decreased, contributing to

the large error rates for the test fields.

To compare the performance of the different linear decision rules, we used the data sets

identified in Fig. 2, 3, and 5. Actually only two data sets were used, because the Imperial

Valley data was used twice with two different choices of training fields.

Results of the classifications made by the five linear and one quadratic decision rules are

shown in Figs. 7 through 12. The curves obtained with the test and training data are shown

separately because of the many decision rules. After examining and evaluating the six figures,

we reached the following conclusions.

(1) When only two channels of data are used, there is no particular preference to be had

among the linear decision rules. The quadratic decision rule required more processing

time with no noticeable decrease in error rates.

(2) When four or more channels were used, the "best linear" rule had the lowest error

rates of the linear rules. For equivalent processing time, it had lower error rates than did

the quadratic rule. For the same number of channels processed, the linear rule did as

well as or better than the quadratic rule on the test fields but slightly worse on the

training fields.

(3) The nearest neighbor and zero covariance decision rules gave the largest error rates.

In fact, there was no clear choice between the two.

(4) The modified equal covariance decision rule was no better than the equal covariance

decision rule and, for one of the data sets, was much worse.

(5) Of the rules suitable for parallel computation, the quadratic rule gives the best per-

formance and the equal covariance rule follows. The equal covariance rule has the

advantage of requiring far fewer coefficients; however, an assessment of the relative

costs of their implementation on parallel processors was not made.
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4

PERFORMANCE EVALUATION DERIVED FROM THE BEST LINEAR DECISION RULE

Section 2 demonstrated that the best linear decision rule can be used for recognition of

multispectral scanner data. A second function for which the rule can be used conveniently is

that of evaluating the expected performance of the recognition process. Performance evaluation

can be used as a distance measure for (1) choosing a subset of channels, (2) forming linear

combinations of channels, and (3) deciding which decision classes should be combined. The

first two of these uses are discussed below, after a derivation of the best linear decision rule.

4.1. DERIVATION OF BEST LINEAR DECISION RULE*

The best linear decision rule is derived from normal distribution functions which are as-

sumed to describe the data. For a pair of functions we wish to test the hypothesis, H0, that a

vector point X is a sample from a random process distribution whose probability function

PO0 (X), rather than an alternative hypothesis, H 1 , with probability function P 1 (X). Both PO(X)

and P 1 (X) have the Gaussian form

PO0 (X)= N(j 0 , RO) (12)

P 1 (X) = N(I 1 , R 1 ) (13)

Either Eq. (6) or the Neyman-Pearson lemma can be used to show that the quadratic decision

rule will minimize the probability of a Type II error (choosing H0 when H1 is true) for any

fixed probability of a Type I error (choosing H1 when H0 is true). A linear decision rule can

be one that decides H0 when

(X - 0 )tD < F (14)

and decides H1 otherwise, with suitable choices for the vector D and scalar F. The advantages

of the best linear decision rule accrue from the choice of D and F.

The function (X - 0 )tD is univariate normal, N(0, Dt R0 D) or N(ptD, DtR 1D), depending

upon which hypothesis, H0 or H1, is true, where p = pl - 0. The probability of a Type I

error is

P (X - 0)tD> F H = DRO1/2 (15)

where

00

(X)= A ey /2dy (16)

*The complete derivation is given in Ref. [3].
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The probability of a Type II error is

P(X - 40)tD<FJH = D 4 2 (17)
1 tR 1 1

where

A = I1 - A0 (18)

The best linear decision rule is derived from Eqs. (16) and (17). The vector D and scalar F

are found that maximize (g tD - F)/(DtR1D)1/2 when F/(DtROD)1/2 is constant.

The maximization problem can be put into a different form by means of the following sub-

stitutions:

(1) GtR0 G = I

(2) G R 1 G= X- 1

(3) Z =Gt(X- 4 0)

FG-1
(4) a = D

DtROD

(5) Z 1 = Gt(l -0 )

The matrix G is chosen so that X is a diagonal matrix. The decision rule is to choose HO if

t t

Z t <a a. The probabilities of the Type I and Type II errors are [(ata)1/ 2] and Z1 at t a) -2n
(ath -la)1//2

For

a= q (x- 1 + KI)Z 1  (19)

t t
-q

a Z1 - aathe quantity (t -l)1/2 s a maximum when a a is held fixed. The value of the constant q de-
(at 1 ) 1/2

termines the probabilities of Types I and II errors.

By Eq. (19) and the substitutions above, the best linear decision rule is found to be: decide H0 if

(X- A0)tR l < q tR-1R R-1 (20)

17
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where

R = qRO + (1 - q)R1  (21)

and ji is defined by Eq. (18). The probability of the Type I error is

P(I) = $[q(ltR- 1RR-1 )l/2] (22)

P(II) = ( 1 - q)(tR-R 1R R-1)1/2] (23)

The constant q is chosen to minimize a weighted sum of Eqs. (22) and (23). There is normally

a constraint placed on q,

O < q < 1 (24)

which causes the decision region for any class to include the mean value of that class.

4.2. COMPARISON WITH QUADRATIC DECISION RULE FOR PAIRS OF SIGNATURES

An analytic method was used to evaluate the usefulness of the best linear decision rule as

compared to that of the quadratic decision rule. The data used for recognition were assumed

to be Gaussian and the average pairwise probability of misclassification was computed. The

classes of data were specified by mean vectors and covariance matrices measured from

scanner data. This method provides a conservative comparison, because the quadratic rule is

optimum for Gaussian data.

The first analytic comparison was a computation of the difference in performance when the

two rules were used on 55 pairs of data. The average percentage of points misclassified was

calculated from both decision rules. The difference of the two averages for each of the 55 pairs

is shown in Table 1. With the exception of two barley fields, the largest difference is seen to

be 2%. Also noted was a significant difference in the times needed to compute the performance

of the two rules.

4.3. THE LINEAR DECISION RULE APPLIED TO CHANNEL SELECTION

The ability to analyze the performance of the linear decision rule rapidly is useful for

channel selection. The problem of choosing a subset of channels is twofold: how.many and

which channels to use. In order to decide how many channels to use for the subset, a measure

such as average probability of misclassification should be associated with each combination

under consideration. As a preliminary step, we made a series of comparisons for pairs of

classes. We decided to use 10-channel data and find subsets of 3 and 5 channels with the best

linear method and two related and faster (but more approximate) methods [9]. In order to

evaluate the difference in performance accruing from the use of two choices of subsets found by

18
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TABLE 1. DIFFERENCE BETWEEN PERCENTAGE MISCLASSIFIED,
WITH LINEAR AND QUADRATIC RULES ON PAIRS

OF FIELDS

Field No. 29 39 75 91 179 180 190 191 202 205

21 - - - -* - 2 - - - 2

29 - 1 - - -* 2 - 1 -*

39 2* 1* - -

75 - - - 5*

91 - 2 - - -

179 -* - -

180 - - - 1*

190

191

202

*Denotes comparison of fields with the same ground cover; e.g., barley.
-Denotes 0%.
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the linear and quadratic decision rules, we decided to rank-order each possible subset using

average pairwise evaluation of the quadratic decision rule. This evaluation required numerical

interrogation. The ranks correspond to optimum rankings when Gaussian data are assumed and
the training sets describe the data statistics.

Seven pairs of fields were used for the comparison. For each of the pairs of signatures,
Table 2 gives (1) the rank of the subset chosen by the fastest linear method; (2) the difference

between the quadratic probability of misclassification (pm) of that subset and the probability of

misclassification of the best subset; (3) the probability of misclassification of the best subset;

and (4) the difference between the probabilities of misclassification of the poorest and the best

subsets. The table shows that the linear method picked the best subset in 9 cases out of 14, did

no worse than third for all but two of the cases, and, in the poorest case, chose a subset with a
probability of misclassification only negligibly greater than the lowest probability of mis-
classification. The fourth column of the table shows how badly a poorly chosen subset of
channels might perform.

The importance of the rankings is shown in Fig. 13, for a subset of 3, and in Fig. 14, for a
subset of 5 channels. The pairwise average probability of misclassification is shown as a func-
tion of the ranking of a subset of channels. One can see that more than one subset can be con-
sidered usable. Some subsets, ranked near the upper end of the scale, are clearly undesirable.
The break in the curve for fields 29-75 occurs because one data channel, 0.8 to 1.0 Am, when
combined with any other pair of channels, provided better discrimination than all combinations
which did not include this channel.

For more than two classes, the selection of a subset of channels must be made with com-
putational time as an important consideration. We selected a stepwise procedure that succes-
sively adds the one channel which gives the lowest average probability of misclassification
when used with the channels already selected. When this was tried on the seven pairs of classes,
the first- or second-ranked subset was found in each case.

We applied this stepwise procedure for ten channels and nine classes, using first the quad-
ratic, then the linear, evaluation method. For this study, the quadratic method took one hour
while the linear method took 70 seconds. This difference resulted in a factor-of-50 time savings
in favor of the linear method. The rankings made with the two methods can be seen in Table 3.
The orderings are the same except that the linear method interchanged the last two pairs of
channels. The use of Channel 2 rather than Channel 8 in a subset of seven channels increases
the average probability of misclassification by only .0001, according to the quadratic calculations.
Similarly, for a subset of nine channels, the interchange in the ordering of the last two ranked
channels increases the average by .00003. Note that the predictions of average probabilities of
misclassification are quite comparable.
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TABLE 2. PERFORMANCE OF LINEAR CHANNEL SELECTION
FOR SEVEN PAIRS OF SIGNATURES

Subset size 3 (120 subsets)

Rank of Subset
Chosen by Linear Linear pm Highest pm

Method - Lowest pm Lowest pm - Lowest pm

4 0.009 0.110 0.32

1 0.0 0.081 0.27

1 0.0 0.110 0.13

1 0.0 0.023 0.08

1 0.0 0.006 0.13

1 0.0 0.010 0.25

1 0.0 0.035 0.29

Subset size 5 (252 subsets)

Rank of Subset
Chosen by Linear Linear pm Highest pm

Method - Lowest pm Lowest pm - Lowest pm

9 0.006 0.090 0.24

1 0.000 0.072 0.23

2 0.000 0.082 0.10

1 0.000 • 0.013 0.04

1 0.000 0.004 0.07

3 0.000 0.006 0.04

2 0.000 0.022 0.15
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TABLE 3. COMPARISON OF CHANNEL SELECTION
METHODS FOR NINE SIGNATURES

Quadratic Channel Selection (STEPER2)

Order of Average Probability
Channels of Misclassification

4 .119

10 .054

1 .031

9 .025

7 .023

5 .021

8 .019

2 .018

3 .017

6 .016

Linear Channel Selection (STEPLIN)

Order of Average Probability
Channels of Misclassification

4 .122

10 .059

1 .034

9 .028

7 .025

5 .024

2 .023

8 .021

6 .021

3 .020

23



ARIM FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

4.4. LINEAR COMBINATIONS

The distance measure, in which the average probability of misclassification is calculated

with a linear decision rule, can be used to find linear combinations of channels, rather than a

subset of channels, for processing multispectral data. Linear combinations may be preferred to

a. subset of channels if, for the same average probability of misclassification, fewer channels

are to be used. The choice between the two methods depends upon the ease with which linear

combinations can be formed. With analog data available, the linear combinations can be formed

at the time the data is digitized. For data in digital form, it may be convenient to form the

linear combinations when the data is converted into a format suitable for recognition, or during

the preprocessing operation.

The problem of finding a good method of choosing linear combinations is primarily one of

finding a workable algorithm in three distinct steps: (1) develop a measure of performance;

(2) develop a minimum seeking technique, and (3) find suitable starting points for initiating the

minimum seeking technique. In addition, the algorithm should not require an excessive amount

of computational time.

The performance measure used is similar to that employed to find a subset of channels

and is derived from the linear decision rule (discussed in Section 3) now used routinely in this

laboratory. The measure can be expressed as:

M ( D /2 i -j) (0 i j 1/2 (25)
ti, j (( + j 1 1/2-

where the summation is for all signatures, the i-th class is distributed normally with mean

vector ji and covariance matrix Ri, and 4(X) is as defined in Eq. (16). An advantage of Eq. (25)

is that it can be developed directly from the maximum likelihood decision rule, so the approxi-

mations used can be enumerated and evaluated. In fact, Eq. (25) is approximately proportional
to the average probability of misclassification that would be measured.

The second step, that of developing a minimum seeking technique, has been completed. A

method has been developed to find a local minimum of a function of several variables by start-

ing at a point and following a path of steepest descent by steps of controllable size. Both the

local gradient and the local curvature are used to estimate the path of steepest descent.

Finding starting points, the third step, is more difficult. One possible starting point is the

linear combination of channels which comprise the optimum subset of the original channels.

Another starting point can be derived by finding the principal components of the covariance
matrix that result from combining all the classes into one single class.
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The measure of performance M (25), is computed with the mean vector and the covariance

matrix of the linear combinations of the data. For a recorded point X, a set of linear combina-

tions, Y, can be formed by a matrix A:

Y = AX (26)

where A has as many columns as there are channels in the recorded data and as many rows as

there are linear combinations. The points, Y, are the points used in the decision process, and

the statistics of Y, rather than of X, are used in Eq. (25). Thus, the problem becomes one of

finding a suitable matrix A, because a choice of A is equivalent to a choice of linear combina-

tions.

The problem of finding a matrix A is one of finding the elements of A. If A is an m x n

matrix, there are mn components to be determined. This number of components can be reduced

to m(n - m) by the choice of a suitable canonical form for A. A canonical form is possible be-

cause the value of M obtained for any A is not changed if PA is substituted for A, where P is

any nonsingular matrix. The canonical form we chose is:

A= tan 011 tan 812. (27)m tan 021.

where Im is the identity matrix with rank m. There is one inherent theoretical difficulty with

this particular choice: it eliminates the linear combinations which have only the value of any

one of the last n - m channels. This limitation should not have any practical significance, how-

ever, because it is possible to pick the 0ij so that any of the channels will essentially be one of

the linear combinations. As an example, if 011 were set equal to n/2 - E, with E arbitrarily

small, and 812, 013 . . . were set equal to zero, then the first linear combination chosen

would consist of channel m + 1 along with negligible contributions from the other channels.

An apparent difficulty with the given canonical form is that it eliminates any A matrices of

the form mAn = (Smxm Tx(nm)) where S is singular, because PA = (PS/PT) and PS + I if S is

singular. This apparent difficulty can be circumvented by reordering the data channels.

The canonical form with the Bij has two advantages. The first is that, in general, a mini-

mum number of unknown scalars must be found. The second advantage is that the minimiza-

tion process can be accomplished by continuously varying the 0.... It is not necessary to have

large jumps in the values of the unknown scalars, which occur if the tan 0.. are considered to

be the unknown scalars.

Thus far, the minimization problem has been expressed in terms of the 8... The digital

decision process to be employed at ERIM is expected to be the pairwise best linear decision

process. For pairwise decisions we can consider a good point as the set of 8.. which minimizes

the average probability of misclassification between any pair of classes, while a bad point max-

imizes the average probability. There can be a large number of good and bad points. For
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example, with 10 classes, there can be as many as 45 of each type of points, because there are

45 combinations of 10 classes taken 2 at a time. Each point is defined modulo 7 [tan 0.. =

tan (0..ij + 7i)] for each 9..ij.

Possible starting points can be found by finding linear combinations as far away as possible
from all of the bad points or as near as possible to all of the good points. Euclidean distance

can be used to compute the starting points, even though we are not dealing with a Euclidean

space. If computer time were of no concern, average probability of misclassification would
be the proper distance measure. We feel that any errors introduced by tile use of Euclidean

distance to find a starting point will be negated during the minimization procedure, which uses
the better distance measure.

The problem of finding starting points can be visualized by considering Fig. 15. Two linear
combinations of three channels of data can be determined by a choice of 011 and 821. All of the
possible pairs of linear combinations, including subsets, can be represented by points in the
graph. A subset consisting of the first two channels is located at the point (0, 0) in the center
of the graph; another, consisting of the first and third channels,is located at the points (0, 7/2)
and (0, -7r/2); the third possible subset, channels two and three, is located at (7/2, 0) and
(-7r/2, 0). Channel combinations comprising possible subsets are shown in the figure as circles.

7T

2 ,,

x Linear Combinations

Bad Point

0 00

0 Subsets

-7r 
0

-IT

-2 O11

FIGURE 15. EXAMPLE OF BAD POINTS
WHEN FINDING TWO LINEAR COMBINA-

TIONS OF THE THREE CHANNELS
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If ten classes are of interest, as many as 45 points of misclassification may be located

within the boundaries of the graph. One can imagine an example where the 45 points were po-

sitioned near the subset locations, in which case the subsets would all be poor choices for

starting points and for processing.

Location of starting points can be complicated. At this point in our program, it is not clear

whether good points, bad points, or both should be used. One advantage of bad points is that they

are fairly easy to find because they depend only on the mean vectors of the class signatures. How-

ever, the approximate locations of the good points can be found almost as easily by assuming a

common covariance matrix shared by each pair of classes.

The work reported above serves only as a starting pointfor continued investigations of linear

combinations of signal channel data for reducing processing costs without reducing recognition

performance. The approach taken here differs from others because it not only considers more

than two distributions but also employs the performance-related probability-of-misclassification

criterion.
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5

PROCESSING OF AREA SURVEY DATA

For the processing of remote sensing (the use of computerized recognition techniques on

multispectral scanner data) to be practical in surveying large areas of ground, it is desirable

to establish recognition signatures determined from a limited area of known content and then

extend them to data collected from other areas. This requires the development of methods to

compensate for systematic variations in the data. Prior work has demonstrated the importance

of correcting variations associated with the scan angle, caused principally by differing path
lengths through the atmosphere and by the angle dependence of the surface reflectance.

Additional sources of variation, which could be ignored for short flights over limited

areas, become important when larger areas are covered. For data collected at altitudes up to
10,000 ft, the time required to overfly larger areas implies that changes in the sun's position
cause non-negligible variations within the data set. When the area is large enough to require
collecting data over a period of many hours within a day or successive days, changes in the
atmosphere can also cause variations in the data. Ground differences such as elevation or
terrain irregularity also affect data.

High altitude aircraft and satellite data can minimize the importance of time-dependent
variations by surveying larger areas quickly, but the atmospheric effects are even more im-
portant at these higher altitudes and, over the larger areas that can be covered (10,000 sq mi
in each ERTS frame), space-dependent variations cannot be ignored. Correction methods also
should compensate for time-varying changes in the instrumentation such as variations in the
calibration of the scanner and recording equipment from one day to the next or from one run
to the next.

This section reports on results obtained from the application of one particular type of
empirical preprocessing transformation to area survey data. The primary objective was to
study run-to-run variations and our ability to extend the signatures from one run to the next.
A discrete form of the multiplicative-additive (U-V) preprocessing transformation, described
in Appendix I and Ref [7], was used to extend signatures extracted from a one-square-mile
area of one run to five subsequent partially overlapping parallel runs. Secondarily, the perfor-
mance of a continuous U-V preprocessing transformation was studied in correcting scan-angle

dependent effects prior to the run-to-run extension.
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5.1. DATA DESCRIPTION

The data used for this area survey was gathered in Ingham County, Michigan on 6 August

1972. Seven runs were used for this study, with the data gathered shortly after noon at 5000 ft

over a rectangular strip one mile wide from east to west and eight miles long from north to south

for which ground truth information was available.

(1) Six runs, alternately eastbound and westbound, perpendicular to the ground truth

strip; the first (run 3) near the northern end of the strip and each successive run one

mile farther south. Each run included a portion of the ground truth area and overlapped

approximately 40% of the area covered by adjacent runs. These runs were used for the

area survey studies.

(2) A southbound run over the ground truth strip. This run was examined to find how much

any variation between the east-west runs was the result of differences in the conditions

of the ground covers of the same crop from one field to another.

These data meet the following conditions desired for the area survey study:

(1) Data were gathered at a sufficient aircraft altitude to cover an appreciable area.

(2) Each of the east-west runs included a portion of the ground truth area necessary to

establish recognition accuracy for each run.

(3) Each east-west run overlapped approximately 40% of each adjacent run, providing

overlapped fields (fields included in both of two adjacent runs) needed for deriving

the discrete U-V preprocessing transformation applied to extend the signatures be-

tween runs.

This data was gathered on a predominantly clear day with few cirrus clouds. The haze

was fairly light, the visibility being estimated as 15+ mi, or 24 km.

The recorded radiances exhibited severe scan-angle dependent variations. The angle ef-

fects on all east-west runs showed a lack of symmetry about the nadir. On some east-west

runs, the radiance increased to 60% more than at the minimum on the northern side in the

shortest wavelength channel (0.46-0.49 pm), with similar but lessening effects for longer wave-

lengths. Yet, on the southern side, there was seldom a discernible increase over the minimum

in any except the shortest wavelength channel, and the southern peak was small compared to

the peak on the northern side. The minimum radiance was never near the nadir, being dis-

placed south in this channel and near the southern edge of the scan in the other channels. Angle

plots (radiance versus scan angle, averaged longitudinally over the entire length of the run) in

all except the shortest wavelength channel were monotonic, increasing toward the northern edge

with scanner vignetting at the extreme edges.
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Figure 16 shows an example of typical scan-angle dependent variations for the 0.46 to

0.49 gm channel of eastbound run 6 (this is typical, but not the most severe of variations ob-

served).

On the southbound run 2, the scan-angle dependencies were also fairly large but much

more symmetric about the nadir.

5.2. PROCESSING

As a preliminary step, the ground truth area of one run was selected to be digitized, clamped,

and scan-angle corrected. Signatures extracted for all 12 channels were then used to select the

best channels for recognition. Five channels were selected having 0.46 to 0.49-, 0.52 to 0.57-,

0.72 to 0.92-, 1.0 to 1.4-, and 9.3 to 11.7-im wavebands at 50% response. Only these five

channels were digitized and used for the remaining runs. The preliminary run was also used

to study the use of the continuous U-V scan-angle correction programs in more detail than pos-

sible on all runs.

The northernmost run, 3, was picked for this preliminary step because:

(1) A count of the fields covered by each east-west run and for which ground truth had

been gathered, showed that this run had about the best representation of crops for

signature extraction of all east or westbound runs; these signatures were to be used

for recognition of all the other parallel runs.

(2) It was desirable to use either the first or last of the parallel runs for signature ex-

traction to maximize the separation between the training fields and some of the test

fields.

Extra care was devoted on this run to delineate the fields accurately and to use only uni-

form fields to derive the angle corrections and signatures. Several combinations of fields

were tried for derivation of scan-angle corrections, though without important variations in the

results. Because this procedure produced only minor improvements and was quite time con-

suming, no such procedure was attempted for the runs subsequently analyzed.

After the five best channels for recognition were selected, all runs were digitized with the

same A-D settings. The entire length of each run was digitized, though only the ground truth

areas were used in the final analysis. The data were smoothed during analog-to-digital con-

version, with eight analog lines combined into one digital line and two resolution elements com-

bined into one point. To avoid any potential sources of bias resulting from possible variations

in the A-D equipment, run 3 was also redigitized. All preliminary work on run 3 was then re-

peated: field boundaries were rechecked, scan-angle corrections rederived and applied, and

signatures again extracted.

30



FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

Four distinct types of ground cover on 15 of the 31 usable fields, were selected to derive

the final angle corrections for run 3. To extract the correction shown in Fig. 17, 30 fields of

10 different ground covers were used.

As noted earlier, two forms of the U-V preprocessing corrections were applied to the data:

(1) A continuous transformation to correct scan-angle dependent variations within each

run,

(2) A discrete transformation to match the mean signal levels in each of the later east-

west runs to that of run 3, the first east-west run used for signature extraction.

The only distinction between these two forms of transformation is the parameter 0; a continuous

0 represents the scan angle within each run for the first case, and a discrete 0 represents the

entire run in the second case. The June 1972 annual report discussed the theory and some ap-

plications of U-V transformations [8].

5.2.1. CONTINUOUS SCAN-ANGLE CORRECTIONS

The computer programs to derive and apply the continuous U-V transformations for cor-

recting scan-angle dependent variations were improved and expanded to incorporate the fol-

lowing features:

(1) It is now possible to combine an arbitrary number of fields having the same ground

cover into one class of fields, this one class then being used as data for deriving the

U-V corrections in the same way an individual field was used previously. Since this

class of fields can cover a larger range of scan angles than an individual field, this

feature should make the programs more suitable for use on data where large indi-

vidual fields are not available (which is particularly the case for higher altitude data).

However, this feature can only be used when ground truth is available. All scan-angle

corrections on the area survey data made use of this feature (individual fields are

small for this 5000-ft data, and ground truth was available on all runs).

(2) The previous program could only derive quadratic corrections-that is, the multi-

plicative correction of

U(O) = 1 + (0 - 00 )/ 1 + (0 - 00)2 2

and the additive correction of

V(O) = (0 - 0)v 1 + (0 - 80 )V2
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These are applied to the data as

(corrected data value) = (original data value) . [U(O)] + V(9)

where 6 is the scan angle, O0 is a reference scan angle (usually picked near the nadir

angle), and a set,U(0) and V(O),exists for each channel. The new program has been

generalized to allow deriving any order U(O) and V(O) up to the tenth order. Only qua-

dratic order U(O) and V(O) were used for the scan-angle corrections of the area survey

data. Higher order fits may be advantageous where the shape of the scan-angle de-

pendency cannot be adequately approximated by quadratic corrections, although cumula-

tive inaccuracies inherent in deriving corrections from real data may negate any bene-

fits from higher order fit. Conclusive tests have not been made.

The algorithm for deriving the U-V corrections requires a minimum of two and preferably

more distinct ground covers to achieve different reflectances in all channels (the channels are

handled independently). In practice, we have found three or four distinct ground covers satis-

factory (on both the Ingham County area survey data and several other data sets). It is, however,
necessary to attain good representation of as many different scan angles as possible in the in-

put data used to calculate the angle corrections, and this is particularly vital at scanner FOV

edges. If not, the corrections rapidly degrade beyond the edges of the data supplied. The choice

of particular fields appears to be less important if the angular coverage is not affected.

From a theoretical model that assumes Lambertian reflectors, we expect the quadratic

multiplicative correction function U(O) to be concave upwards, having a minimum of 1 and

varying no more than approximately 20% above unity; and the additive correction V(O) to be

convex upwards and negative, having a maximum of 0 (assuming that the reference angle is

properly chosen at the data minimum; the multiplicative function is made exactly 1.0, and the

additive function exactly 0.0 at the reference angle).

In practice, we obtained multiplicative and additive correction functions which had the op-

posite curvatures from those expected and were individually far stronger than expected on the

Ingham County area survey data and some other data tried. However, the curves tended to

counteract each other and, except near the edges of the run, produce reasonable corrections.

In about 75% of the cases the multiplicative correction function went negative near or just

within the useful range of scan angles. Deviations from the theoretically expected correction

functions may be attributable to bidirectional reflection. But, in practice, the U-V method

should probably be considered as one for merely determining the best fit of two arbitrary

curves to noisy data.
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The U-V transformation is not restricted to Lambertian reflectors, being theoretically

capable of completely correcting data where the reflectances are of the form

6' (0) = 6 iK lj() + K .(6) (28)
ii 1] 13 2j

in each channel j, where .*. depends only on the ground cover i and Klj(0) and K2 j(6) depend

only on the scan angle 0 [2]. However, it has not been established how well any real data cor-

responds to this formula. Incomplete removal of scan-angle dependencies after the U-V trans-

formation may be explained by different angle dependencies for the reflectances of the different

ground covers, in contradiction to the above formula; in which case, the scan-angle corrections

applied may be an average correction for the ground covers used as data in calculating the

corrections.

The reductions in the scan-angle dependent variations resulting from the continuous U-V

scan-angle corrections were studied in most detail in the preliminary run 3 analysis. Angle

plots (radiance versus scan angle) of individual fields and the mean and standard deviation of

data within individual fields were compared for all fields of the same ground cover at different

scan angles before and after angle corrections. These angle plots show how well individual

ground covers of interest are angle corrected, and may be more reliable in examining the angle

corrections than overall angle plots (radiance versus all scan angles, averaged longitudinally

over all data on the length of the run before plotting). Both types of examination were in gen-

eral agreement. Investigation of individual fields showed we were able to remove 50 to 75%

of the scan-angle dependent variations for individual ground covers, while the overall angle

plots showed we were removing at least half the variations. But since examining individual

fields this way is very time consuming and the overall angle plots generally representative,

only overall angle plots were verified in the subsequent analysis.

The 60% increase in radiance noted at the northern edge of east-west runs in the shortest

wavelength channel on the uncorrected data was typically reduced to 20 to 30% as viewed on

overall angle plots (with correspondingly better results in the longer wavelengths).

Figures 18 and 19 show the multiplicative and additive correction functions derived from

the data of Fig. 16 (the shortest wavelength channel of eastbound run 6). These corrections

are fairly typical of the shorter wavelengths, illustrating how strongly corrections counteract

each other over most scan angles of interest, though the Fig. 16 data has scan-angle variations

only half as severe as those of some other runs. Table 4 shows the data after the corrections

were applied.

To verify the feasibility of combining small regions known to be of the same material class,
we repeated one of the angle corrections using exactly the same regions of ground data but
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TABLE 4. THE GROUND TRUTH FIELDS USED

(a) Number of Fields used from each East-West Run

Total Angle Signature Fields Matching Runs
Run Identified Correction Extraction Recognition 3 4 5 6 7 8

3 31 15 30 30 -- 10

4 27 24 0 27 10 -- 13 13

5 18 run 7 used 0 18 8 --

6 33 33 0 33 9 -- 15

7 35 25 0 34 15 -- 12

8 35 28 0 32 12 --

(b) Number of Fields of each Ground Cover used for Recognition on the East-West Runs

Corn Corn Dry Winter
Run EW Rows NS Rows Beans Woods Hay Oats Wheat Buckwheat Rye Pasture

3 5 2 5 2 3 4 2 1 1 5

4 10 2 2 0 3 4 1 0 0 5

5 5 3 1 1 3 0 0 0 0 5

6 6 12 0 0 8 1 0 0 1 5

7 6 9 0 5 7 1 2 0 1 3

8 5 9 0 5 4 4 3 0 2 0

Combined . .\
for 4 Dry

Classes Corn Beans Woods Grains and Grasses
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without identifying the ground covers to the program; thus the program was required to con-

sider each region as a separate field of potentially different ground cover. The angle correc-

tions resulting from the second run were somewhat degraded. The central corrections were

less uniform, and the multiplicative correction coefficient went to a negative value nearer the

center. But the resulting corrections still seemed fairly satisfactory.

5.2.2. DISCRETE RUN-TO-RUN CORRECTIONS

The key feature of this area survey study was the adjustment of scanner signal levels in

later runs to match those of run 3 before the signatures extracted from run 3 were applied.

This level adjustment was done with the discrete U-V preprocessing transformations. Trans-

formations between adjacent pairs of runs were derived from mean radiances for fields ob-

served on each of the two runs. A recursion formula was used to obtain a single correction by

combining the U(e) and V(8) corrections for each successive pair of adjacent runs between run

3 and the run being adjusted. Common fields were available from the region where each east-

west run overlapped about 40% of the preceding east-west run. This method has the advantage

that no ground truth information is needed to pick suitable fields (such ground truth is generally

not available in typical area surveys). As with the continuous U-V transformation used for

scan-angle corrections, it is necessary to use at least two different ground covers with dis-

tinct reflectances in each channel. Although suitable fields could have been selected from the

overlap regions anywhere along the seven mile length of the runs, the already delineated fields

from the mile of ground truth were used. Ten to thirteen such fields representing several

ground covers of distinct reflectances were available between each pair of runs (except run

5, discussed below). We felt these provided sufficient data.

Run 5, for which adequate ground truth fields for deriving the angle corrections were dif-

ficult to locate, proved to be an identification stumbling block. Only 18 fields were considered

to be reliably identified and delineated, in comparison with 27 to 35 on the other east-west

runs. Only five of these fields were shared by runs 4 and 5, and none by runs 5 and 6. The

five fields shared by runs 4 and 5 were augmented with eight other fields selected outside the

ground truth area to obtain enough fields for averaging over atypical data. Two combinations

of overlap fields were tried, but both gave inferior adjustments; the resulting recognition on

run 5 was only about 9% correct for 10 classes; 14 of the 18 fields had no correct points.

Since the results of the overlapping fields method were already so markedly degraded by

run 5, we considered run 5 to be anomalously bad, and bridged over it with an alternate method

of deriving the U-V transformations. For this approach, we used the ground truth to compare

non-overlap fields in runs 4, 5, and 6 (first averaging together fields of the same ground cover

within each run, since we were no longer comparing identical fields).
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The alternate method also was used to derive run 6 corrections in two ways: directly

from run 4 data to run 6 data, and from run 4 to run 5 and then from run 5 to run 6. Both cor-

rections gave essentially the same results, the correct recognitions on run 6 differing by less

than 1%.

The basic method of using overlap fields was again used from run 6 on.

5.3. CLASSIFICATION RESULTS

Recognition results were obtained in the ground-truth area for three situations: (1) for

each east-west run after scan-angle correction but before the run-to-run signature extension

(as a basis for comparison), (2) for each east-west run after run-to-run signature extension

by level adjustments with the discrete U-V transformation, and (3) for areas of north-south

run 2 corresponding to each east-west run (to see how much variation was the result of differ-

ences in the ground cover). We did not perform recognition before the scan-angle corrections,

since poor results were expected from the magnitude of scan-angle effects present and also

because the improvement resulting from the angle corrections had been previously demonstrated.

Recognition was carried out with the LINMAP linear recognition program, with the ten sig-

natures extracted from run 3 and all five channels selected for the complete digitization. The

null-set limit was set at the 0.1% confidence level in all cases.

Experience proved that all ten classes originally selected on run 3 could not be reliably

distinguished, so these were then combined into four classes by adding the recognitions of

similar classes. The four classes are shown in Table 5. Results were analyzed for both the

ten and the four classes. The overall trend on successive runs was the same in either case,

although naturally the percent correct recognition was consistently higher for the four classes.

The correct recognition in an individual field was calculated as the number of points cor-

rectly classified divided by the number of points correctly classified plus the number incor-

rectly classified, with non-classified points being ignored (28.10% of the points were not clas-

sified on the east-west runs before signature extension, 7.44% after signature extension, and

19.59% on the north-south run).

Table 5 shows the average correct recognition on a run-by-run basis for the three situa-

tions described above, while Table 6 illustrates the individual ground cover versus individual

class recognition results for signature extraction run 3. The recognition accuracy generally

degrades as one progresses away from the training area of run 3.
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TABLE 5. RUN-BY-RUN AVERAGE CORRECT RECOGNITIONS

(a) Before application of U-V signature extension transformations to the east-west data

(b) After application of U-V signature extension transormations to the east-west data

(c) For corresponding regions of the north-south run

10 Classes Run 3 Run 4 Run 5 Run 6 Run 7 Run 8
(a) Before extension (%) 78.291 35.958 22.052 17.511 24.352 20.509

(b) After extension 78.291 38.940 27.972 13.824 6.748 16.591

(c) North-South run 69.788 48.363 27.195 28.882 41.799 40.038

4 Classes

(a) Before extension 91.477 70.707 53.629 45.741 54.090 43.669

(b) After extension 91.477 75.542 59.427 66.688 38.381 36.155

(c) North-south run 83.463 76.131 62.668 63.967 67.846 72.077
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TABLE 6. INDIVIDUAL GROUND COVER VERSUS INDIVIDUAL CLASS RECOGNITION RESULTS FOR RUN 3

Number Recognized in Each of the 10 Classes Not
Corn Dry Winter Buck- Past- 4 Classes Clas- Percent Correct

E-W N-S Beans Weeds Hay Oats Wheat wheat Rye ure Right Wrong sified 10 classes 4 classes

Corn E-W 1600 202 29 2 42 551 1 44 1802 669 50 67.434 78.298

Corn N-S 27 493 14 1 8 82 44 520 149 34 68.014 72.089

Dry Beans 32 20 1544 9 5 1 31 1544 98 36 93.369 93.369

Woods 1 675 675 1 24 99.765 99.765

Hay 1 406 13 1 24 444 1 30 91.450 99.645

Oats 7 24 94 3 3 340 464 7 49 35.984 96.354

Winter Wheat 40 46 4 68 351 18 437 90 22 66.728 82.595

Buckwheat 140 140 0 0 100.000 100.000

Rye 2 5 4 1 2 153 156 11 1 91.617 93.413

Pasture 1 19 21 690 730 1 7 93.163 99.861

1704 773 1595 675 452 256 995 142 293 1054 6912 1027 253 78.291 91.477

0

m
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5.4. LIMITATIONS

These results do not represent a satisfactory demonstration of signature extension tech-

niques for area survey operations. On the other hand, and for several reasons, we do not be-

lieve that the results should lead one to conclude that signature extension techniques are not

adequate for processing area survey data. First, this was an initial attempt and used only one tech-

nique of several developed over a period of years; others which have been successfully tested

should be tried for comparison. Second, in retrospect, the manner in which the transformations

were derived and applied could be improved upon. In particular, the overlap regions used for

run-to-run extension were subject to the greatest irregularities in the scan-angle corrections

which preceded the run-to-run analysis, and such errors tend to accumulate. Third, there are

questions about the representativeness of the signatures used and the makeup of the cover

classes identified; certainly the stages of crop development at the time this data set was col-

lected could be a complicating factor.
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6

CONCLUSIONS AND RECOMMENDATIONS

The operational use of multispectral scanners for taking resource inventories depends in

part on the development of techniques to reduce data processing costs. Such costs can be re-

duced through the development and use of more efficient decision algorithms and computers

and/or, as is usually done, by reducing the volume of data processed.

A linear decision rule has been developed for general purpose (serial) digital computation

and tested against the more conventional quadratic decision rule. The linear rule was found

to be superior when four or more data channels were used, with its probability of misclassifi-

cation lower for equal processing times, and its processing time shorter for equal probabilities

of misclassification on test fields. Four other linear rules also were tested but found to be less

accurate than the best linear rule. Of those suitable for implementation on parallel processors,

the equal covariance rule had the best performance. We recommend that the best linear de-

cision rule, as embodied in the ERIM computer program called LINMAP, be implemented on

the multispectral data processing systems at MSC for use and further verification.

It was shown that the best linear decision rule can also be used to evaluate the expected

performance of recognition processing. When we applied this rule to the problem of selecting

subsets of channels, a very substantial reduction in computer time was realized as compared

to results with a more exact quadratic procedure. The outputs are readily interpretable in

terms of average probabilities of misclassification.

A new approach to the problem of determining linear combinations of channels to reduce

processing costs has been introduced. It employs the concepts of the best linear decision rule

in its performance measure and considers multiple distributions. A minimum-seeking tech-

nique has been implemented. Only the problem of selecting suitable starting points remains

before we complete the first full implementation of the approach for testing and evaluation;

fortunately, some promising starting point selection methods have been identified. Continued

development of the procedure for determining linear combinations of channels is recommended.

It was shown that in processing area survey data, recognition performance degrades as

one moves away from the training area. A study of the U-V preprocessing transformation for

signature extension to improve recognition results on the area survey data did not produce

satisfactory results; while we consider our early testing to be neither complete nor conclusive,

the experience gained in this exercise may well enable more effective tests of the U-V pre-

processing technique. Other available preprocessing and adaptive techniques for signature

extension should also be explored.
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Appendix I
SIGNATURE EXTENSION METHODS

The received multispectral signal from any target in any channel is described by the equa-

tion:

L() = pE()T(8) + L (8) (29)

We develop from this basic equation techniques which improve processing capabilities by re-

moving the effects of changes in E(O), T(e), and Lp () when 8 changes. If we interpret B as a

scan angle, we then remove the scan-angle effect. If we interpret 8 as altitude or flight number,
we remove the effects of spatial or temporal changes in the atmosphere. If 8 is considered to
be a position on the ground, we then extend the approach to two- or three-dimensional correc-

tion. We can make these various interpretations of 8 because we need not require that 8 be
continuous. However, if in fact 8 is continuous for some particular consideration, then this
fact can be used to simplify the correction technique.

The idea of the correction scheme is that Eq. (29) can be written in the form:

L(80) = L(B)U(8) + V(B) (30)

where multiplicative correction U(B) and additive correction V(B) are independent of p and

hence apply to any ground reflector. Thus a measurement L(O) taken under condition 0 can be
corrected to be the measurement L(0) that would be measured from the same reflector under
condition 80 , provided U(B) and V(B) are known. Since Eq. (30) is a linear equation, if measure-
ments of two reflectors with different p's are made under conditions B and 00 , then U(8) and
V(B) can be computed.

Let us first list some of the possible applications of this technique. A thoughtful examina-

tion of this list which is by no means exhaustive, together with the discussion to follow on

possible limitations, allows an estimate of the applicability of this technique to most if not all
problem areas.

(1) Scan angle. The amount of atmosphere through which the reflected energy propagates
depends upon scan angle. The atmosphere affects both the transmission and path ra-
diance.

(2) Cloud shadows. Signals received from ground reflectors that are in cloud shadows
may differ greatly from measurements made in adjacent sunlit areas of the same
reflectors.
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(3) Changes along flight line. This problem area is simply one of extending the scan-angle

effect to two or three dimensions.

(4) Different data collections from the same scanner. These collections can be taken

either on the same day at different geographical locations and altitudes, or on differ-

ent days or times of the same day. Corrections of calibration differences are auto-

matically provided in the course of preprocessing; the scanner is operated in its

linear range.

(5) Data Bank. This is a result of (4) above. If we can extend signatures from one col-

lection to another, we can collect measured data in a special Data Bank, and withdraw

this data for use as signatures in the processing. Where signatures have been identi-

fied, they too can be stored in the Data Bank.

(6) Data collection from different scanners. In order to extend signatures from one scan-

ner to another, we are faced not only with the problems inherent in Eq. (29), but also

with the fact that there is no one-to-one correspondence between the channels in any

two scanners.

Problem areas inherent in Eq. (29), although not explicitly stated, imply that the correc-

tions cannot be made perfectly.

(1) The most obvious difficulty to be encountered occurs when there are not two in-scene

references that could be used to find U(O) and V(6). If only one were available, then

either a multiplicative or additive correction, rather than the desired combination,

could be used. Many researchers have tried this type of correction, and claim varying

degrees of success.

(2) The various sources of noise have not been considered. The noise will affect the pre-

cision with which U(O) and V(O) can be measured. The correction would be applied so

that the mean value of the data measured under condition 8 corresponded to the mean

value under 80. The covariance matrix of the corrected data would not necessarily

be the same as that taken under 0. Some investigation is needed into the measured

covariance matrices in order to find a logical way to handle this problem.

(3) The reflectivity p may depend upon 8. To the extent that we can write p = pip(8) where

pi is a constant dependent on the type of reflector and p(O) is common to all reflectors,

we can neglect p(S). We never measure E(S)T(8) directly, so the inclusion of p(S) into

this product would not change the correction algorithm. Even if we knew the variation

of the reflectivity, p, with 8, this would not help since we would have to classify the

data before we could utilize the knowledge. Since we want to correct the data to im-
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prove classification capability, we clearly cannot do this if the correction itself de-

pends upon the classification. An exception might be to use the measured effect of

bidirectional reflectivity itself as a signature. This possibility is mentioned for aca-

demic interest only, not as a suggestion that should be implemented.

(4) Equation (29) ignores the effect known as green haze. To some extent, limited by

noise and the validity of an assumed model, this effect can be eliminated.

(5) Dependence of reflectivity upon time and spatial position. The classification is based

upon the assumption that measurement of the reflectivity would be sufficient to identify

a ground cover. Reflectivity of a given ground cover, as before and after a rainfall,

is not necessarily constant.

We can see that there are problems, not necessarily insurmountable, in applying the cor-

rection. Implementation of the technique described herein could be important in that it could

extend the usefulness of the multispectral scanner.
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